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Presentation Purpose 

Â Describe alternative methods for making normative 

interpretations of student academic growth: 

Ç Traditional growth norms 

Ç Student growth percentiles 

Ç Multilevel growth model norms 

Â The alternative methods:   

Ç Depend on different assumptions 

Ç Have different data requirements 

Ç Provide different information about student progress 

Ç Answer different research and policy questions 
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Growth Norms Based on Different Ideas of Growth 

Â Kinds of growth models (Briggs & Betebenner, 2009): 
Ç Growth conditional on time is an absolute growth model 

Ç Growth conditional on prior achievement is a relative growth model  

Â Two methods presented here are examples of absolute 

growth models: 
Ç Traditional òmedicaló growth norms 

Ç Multilevel model growth norms 

Â Third method presented here (Student Growth 

Percentiles) is described as: 
Ç a relative growth model by Betebenner, 2009  

Ç a conditional status model by Castellano & Ho, 2012 
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Empirical Examples Presented Here 

Â Based on Oregon state reading/language test scores from a 

cohort of students who were in the third grade in 2008, 4th grade 

in 2009, 5th grade in 2010 and 6th grade in 2011 

Â The complete sample of all students with a valid reading/ 

language score in 2011 (N = 40,160) had the following 

characteristics: 

Ç 49% female 

Ç 13% current or former LEP students 

Ç 14% special education 

Ç 52% economically disadvantaged 

Ç 66% White, 20% Hispanic, 5% Multi-ethnic, 4% Asian, 3% Black/African 

American, 2% Native American/Alaskan Native 
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Traditional Approach to Growth Norms 

Â òPediatrician normsó 

Â Almost always cross-sectional not longitudinal 

Â Height, weight, stroke risk, fetal growth, etc. 

Â Interest often in identifying individuals at extremes of  

òreferenceó intervals 

Â Depends on size and representativeness of  sample  

Â Two step procedure used to first smooth curves (e.g., 

regression), then transform curves to parametric estimates  

using the LMS (lambda, mu, sigma) procedure (CDC, 2002) 

Â Used to compare current measurement of  an individual to the 

normative group to evaluate growth or development 

Â Usually graphical, descriptive interpretation 
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CDC Infant Growth NormsñLength and Weight by Age 



Traditional Approach to Growth Norms 

Â Following figures present growth norms in deciles (percentile 

ranks of 10, 20, 30, 40, 50, 60, 70, 80, and 90) for Oregon state 

test scores 

Ç Calculated from distribution of reading-language scale scores for all 

students who had a valid reading-language test score in each year (third 

grade in 2008, 4th grade in 2009, 5th grade in 2010 and 6th grade in 2011) 

Ç Cross-sectional sample  

Â On next slide figure on left shows observed deciles 

Â Figure on right shows deciles smoothed by regression fitting and 

a Box-Cox transformation 
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Example using empirical deciles to interpret an 

individual student growth curve (dashed line) 



Student Growth Percentiles (SGP) 

Â Described as a Relative Growth Model 

Ç Current year performance conditioned on prior year(s) of performance 

Ç Relative rank in a distribution of those who had similar scores in previous 

years  

Â Oregon sample composed of all those who had a reading-

language score in 2011 and at least one prior year score in years 

2008-2010 

Â Betebenner (2009) approach uses ordinal models (quantile 

regression) as well as B-spline, cubic polynomial smoothing 

Â SGP package in R, PROC QUANTREG in SAS 

 

 

11 

http://www.ncaase.com/


12 
Reproduced from Betebenner (2009), Educational Measurement: Issues and Practice , 28(4), 42ð51. 

Bivariate distribution of 

scores from two years 

Taking account of  prior achievement scores  

(red slice) for a single 2005 score of  600 

2006 conditional distribution of  scores 

(red line) for those with a 2005 score of  600 

For example, a 2006 score of  650 (red dotted line)  

represents 70th PR for those who had a score of  600 in 2005 
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Student Growth Percentiles, Oregon Sample 
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Example: student with a 2011 score of  220 and 2010 score of  

214 is compared to all òacademic peersó who also had a 2010 

score of  214ñSGP is 40 



Multilevel Growth Model (MGM) 

Norms  

 
Â Another alternative representation of student growth rests on the 

statistical modeling of change over time 

Â These models are absolute growth models in that they relate 

change to a time function and maintain the metric of the score 

scale 

Â Therefore a vertically linked score scale is necessary 

Â Two types of MGM illustrated here: 

Ç Two level MGM (time nested within student) with OLS estimation 

Ç Latent Variable Regression (LVR) in which a latent estimate of intercept is 

used to predict growth using empirical Bayes estimation 
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Multilevel Growth Models 
Within-person, level-1 (measurement occasions, 1-t): 

  Scoreij = Ǡ0j + Ǡ1j (Timeij) + Ǡ2j (Time Squaredij) + rij  

 

Between-person, level-2 (persons, 1-i): 

    Ǡ0j = ǡ00 + u0j 

       Ǡ1j = ǡ10 + u1j 

       Ǡ2j = ǡ20 + u2j 

Latent Variable Regression (LVR):     

    Ǡ1 = ǡ10
* + ǡ11(Ǡ0) + u1

* 

      Ǡ2 = ǡ20
* + ǡ21(Ǡ0) + u2

*
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R 
 

Reproduced from Thum (October, 2012). The Effective Use of  Some School-Level Indicators of  Student 

Learning Growth: NWEAõs Learning Productivity Measurement (LPM) System, 12th Annual Maryland 

Assessment Conference. 
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Fixed Effect  Coefficient 
 Standard 

error 
 t-ratio df  p          

     

Intercept, ɔ00  214.7108 0.0619 3470.395 36948 <0.001 

     

Slope, ɔ10  5.6303 0.0416 135.381 36948 <0.001 

     

Curvature, ɔ20  

 

-0.3492 

 

0.0121 

 

-28.951 

 

36948 

 

<0.001 

 

Final estimation of variance components 

Random 

Effect 

Standard 

 Deviation 

Variance 

 Component 
  df ɢ2 p-value 

Intercept, u0 10.9042 118.9006 35444 255258.76 <0.001 

Slope, u1 3.8214 14.6029 35444 45773.14 <0.001 

Curvature, u2 0.7920 0.6273 35444 39051.53 <0.001 

level-1, r 

 

4.2265 

 

17.8631 

 
      

Final estimation of fixed effects 

MLM Growth Model Results 
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Growth Deciles Based on MLM OLS 
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Growth Deciles Based on MLM LVR 

Empirical Bayes Estimates 
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Comparing the Methods  

 
Â Absolute vs. relative growth methods represent different entities  

Â What is ògrowthó? 

Â Traditional norms: 

Ç Provide information on absolute growth 

Ç Based on smoothing and estimation of distribution parameters which are 

then used to estimate percentiles 

Ç Assumptions about underlying theoretical distributions lead to use of 

smoothing methods 

Ç Explicit evaluation of empirical curves and adaption of methods to ensure 

fit; sample weighting to ensure representativeness 

Ç Data requirements: large samples, constant scale over time, cross-sectional 

Ç Largely descriptive use and interpretation; interpretation straightforward 
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Comparing the Methods  

 
Â Student Growth Percentiles: 

Ç Provide information on relative ranking; do not directly represent growth 

Ç Based on complex modeling 

Ç Assume need to correct for scale imperfections and distributional 

irregularities but same corrections often applied regardless of particular 

distributional characteristics 

Ç Data requirements: large samples, do not require same scale (or even 

content) over time, at least two years of longitudinal data 

Ç Expression of results in percentile ranks, familiar to users  
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Comparing the Methods  

 Â Student Growth Percentiles: 

Ç òConditional Status Percentile Ranksó a more accurate name 

than ògrowth percentilesó (see Castellano & Ho, 2012) 

Ç Provide only normative information; criterion-referenced 

interpretations require SGPs to be linked back to score scale 

or proficiency categories 

Ç Equivalent to residuals that estimate difference between 

predicted and actual performance in current year based on 

previous year(s) test scores 

Ç Difference mainly in estimation methods 

Â SGPs assume ordinal scale and nonnormal score distributions 

Â Regression residuals assume interval scale and normal score 

distributions (median difference in PR = 2.2) 
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R2 = .98 

Correlation of  SGPs with 

Conditional Regression Residuals 


