Alternative Methods for Computing Growth Norms

Joseph Stevens
Joseph Nese
and
Gerald Tindal
University of Oregon

Presented at the annual NCME Conference, Chicago, IL, April, 2015

© Stevens, 2015
Contact Information:
Joseph Stevens, Ph.D.
College of Education
5267 University of Oregon
Eugene, OR 97403
(541) 346-2445
stevensj@uoregon.edu

Presentation available on NCAASE web site: http://www.ncaase.com/

This research was funded in part by a Cooperative Service Agreement from the Institute of Education Sciences (IES) establishing the National Center on Assessment and Accountability for Special Education – NCAASE (PR/Award Number R324C110004); the findings and conclusions expressed do not necessarily represent the views or opinions of the U.S. Department of Education.
Presentation Purpose

- Describe alternative methods for making normative interpretations of student academic growth:
 - Traditional Growth Norms (TGN)
 - Student Growth Percentiles (SGP)
 - Multilevel Growth Model norms (MGM)

- The alternative methods:
 - Depend on different assumptions
 - Have different data requirements
 - Provide different information about student progress
 - Answer different research and policy questions

http://www.ncaase.com/
Growth Norms Based on Different Ideas of Growth

- Kinds of growth models (Briggs & Betebenner, 2009):
 - Growth conditional on time is an absolute growth model
 - Growth conditional on prior achievement is a relative growth model

- Two methods presented here are examples of absolute growth models:
 - Traditional Growth Norms (TGN)
 - Multilevel Growth Model (MGM) norms

- Third method presented here (Student Growth Percentiles) is described as:
 - a relative growth model by Betebenner, 2009
 - a conditional status model by Castellano & Ho, 2013
Empirical Examples Presented Here

- Based on three cohorts of fifth grade students in a large school district in Arizona

- 3,985 students across the three cohorts; 3,949 students (99%) had at least one mathematics score and 3,947 students (99%) had at least one reading score

- Sample demographics:
 - White (23%), Hispanic (52%), Black/African American (11%), and American Indian/Alaskan Native students (8%); majority-minority district
 - 75% eligible for FRL
 - 36% active or monitored ELL
 - 48% female
Student scores on the mathematics and reading subtests of the Measures of Academic Progress (MAP; Northwest Evaluation Association, 2011)

MAP was administered seasonally (fall, winter, spring)

MAP is an untimed computerized adaptive test

Each test includes 50 multiple-choice items with 4 or 5 response options

MAP items calibrated on a common, vertical scale, using a one parameter, IRT (Rasch) model (NWEA, 2011)
Traditional Approach to Growth Norms

- Used with measures of intelligence, achievement, social competence, psychological functioning, health science applications, etc.
- Interest often in identifying individuals at extremes of “reference” intervals or in tracking developmental progress
- Key consideration is the sampling method used to select the norms group
- Another important consideration is local vs. “population” norms
- Empirical descriptions of norm group performance often augmented by fitting regression models and/or smoothing of distributions (we present unsmoothed deciles here)
Figure. Traditional growth norm deciles for mathematics (panel on left) and reading (panel on right).
Student Growth Percentiles (SGP)

- Described as a Relative Growth Model
 - Current year performance conditioned on prior year(s) of performance
 - Relative rank in a distribution of those who had similar scores in previous years
- In essence a gain score model; also referred to as a “conditional status percentile rank” model by Castellano & Ho (2013)
- Betebenner (2009) approach uses ordinal models (quantile regression) as well as polynomial smoothing
- We used SGP package in R
Bivariate distribution of scores from two years

Taking account of prior achievement scores (red slice) for a single 2005 score of 600

2006 conditional distribution of scores (red line) for those with a 2005 score of 600

For example, a 2006 score of 650 (red dotted line) represents 70th PR for those who had a score of 600 in 2005
Figure. SGP norm deciles for mathematics (panel on left) and reading (panel on right).
Multilevel Growth Model (MGM) Norms

- Multilevel modeling of change over time
 - Absolute growth model
 - Requires a vertically linked score scale
- Two-level MGM used here using HLM 7
- Time coded 0, 1, or 2 for fall, winter, and spring test administrations

Level-1 (measurement occasions, 1-t):

\[
\text{MAP Score}_{ij} = \beta_0 + \beta_1 (\text{Time}_{ij}) + r_{ij}
\]

Level-2 (persons, 1-i):

\[
\begin{align*}
\beta_0 &= \gamma_{00} + u_{0j} \\
\beta_1 &= \gamma_{10} + u_{1j}
\end{align*}
\]

- We calculated deciles of both OLS and EB estimates
Figure. MGM empirical Bayes deciles for mathematics (panel on left) and reading (panel on right).
Comparing the Methods

- Following Castellano & Ho (2013) we also calculated conditional regression residuals (CSR) to compare to SGP results.

- Correlations: Math in below diagonal, Reading above diagonal.

<table>
<thead>
<tr>
<th></th>
<th>TGN spring</th>
<th>MGM spring</th>
<th>SGP spring</th>
<th>CSR spring</th>
<th>OLS slope</th>
<th>EB slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGN spring</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGM spring</td>
<td>.98</td>
<td>1.00</td>
<td>.19</td>
<td>.18</td>
<td>-.02</td>
<td>-.31</td>
</tr>
<tr>
<td>SGP spring</td>
<td>.39</td>
<td>.20</td>
<td>1.00</td>
<td>.99</td>
<td>.81</td>
<td>.70</td>
</tr>
<tr>
<td>CSR spring</td>
<td>.40</td>
<td>.21</td>
<td>.99</td>
<td>1.00</td>
<td>.80</td>
<td>.69</td>
</tr>
<tr>
<td>OLS slope</td>
<td>.50</td>
<td>.35</td>
<td>.82</td>
<td>.82</td>
<td>1.00</td>
<td>.93</td>
</tr>
<tr>
<td>EB slope</td>
<td>.94</td>
<td>.87</td>
<td>.55</td>
<td>.57</td>
<td>.74</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Comparing the Methods

- Random sample of student PRs by method in math and reading:

<table>
<thead>
<tr>
<th>Student</th>
<th>TGN</th>
<th>MGM</th>
<th>SGP</th>
<th>CR</th>
<th>OLS slope</th>
<th>EB slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>43</td>
<td>55</td>
<td>10</td>
<td>13</td>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td>B</td>
<td>34</td>
<td>37</td>
<td>34</td>
<td>36</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>C</td>
<td>73</td>
<td>60</td>
<td>63</td>
<td>65</td>
<td>43</td>
<td>60</td>
</tr>
<tr>
<td>D</td>
<td>66</td>
<td>39</td>
<td>79</td>
<td>78</td>
<td>33</td>
<td>47</td>
</tr>
<tr>
<td>E</td>
<td>73</td>
<td>84</td>
<td>21</td>
<td>22</td>
<td>38</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Student</th>
<th>TGN</th>
<th>MGM</th>
<th>SGP</th>
<th>CR</th>
<th>OLS slope</th>
<th>EB slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>57</td>
<td>79</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>G</td>
<td>29</td>
<td>40</td>
<td>11</td>
<td>12</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>H</td>
<td>45</td>
<td>50</td>
<td>32</td>
<td>33</td>
<td>30</td>
<td>29</td>
</tr>
<tr>
<td>I</td>
<td>94</td>
<td>96</td>
<td>49</td>
<td>46</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>J</td>
<td>51</td>
<td>54</td>
<td>42</td>
<td>40</td>
<td>74</td>
<td>74</td>
</tr>
</tbody>
</table>
Comparing the Methods

- Absolute vs. relative growth methods represent different entities
- What is “growth”?
- Traditional norms:
 - Provide information on absolute growth
 - Assumptions about underlying theoretical distributions often lead to use of smoothing methods
 - Data requirements: representative, large samples; vertical scale
 - Largely descriptive use and interpretation; interpretation straightforward
 - Allows absolute judgment of level of performance at any point in time included in the norms

http://www.ncaase.com/
Comparing the Methods

Student Growth Percentiles:

- Provide information on relative ranking; do not directly represent growth; in essence a “residual gain score”
- Based on complex modeling
- Assumes need to correct for scale imperfections and distributional irregularities but same corrections often applied regardless of particular distributional characteristics
- Data requirements: large samples, do not require same scale (or even content) over time, at least two years of longitudinal data
- Misinterpretations likely:
 - The term “growth” is used, but not really growth
 - Documents say SGP provides comparisons to “student’s peer group,” but not peers in any usual sense
Comparing the Methods

- MGM Methods:
 - Provide information on absolute growth
 - Based on complex modeling; methods used (MLE and EB) provide highly efficient estimation
 - Data requirements: Moderately sized samples ($N > 200$), vertical scale, longitudinal data, more occasions are better
 - An advantage of MGM is the handling of missing data and the ability to correctly model varying times of measurement
 - Adjusts for unit “weakness” through EB shrinkage
 - Allows absolute judgment of level of performance at any point in time included in the norms
 - Interpretation of deciles is straightforward

- Need for caution, careful interpretation, and additional research on all methods!